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I wish to give my thanks to many authors and collaborators whose work
and help has enabled the presented view. Related to moments, I feel
more and more indebted to Gene Golub.

Iveta Hnětynková,
Petr Tichý,
Dianne O’Leary,
Gerard Meurant.
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Stieltjes (1893-1894)

Given a sequence of numbers ξk, k = 0, 1, . . . , a non-decreasing
distribution function ω(λ) is sought such that

∫ ∞

0

λk dω(λ) = ξk , k = 0, 1, . . . ,

where ξk represents the k-th (generalized) mechanical moment of the
distribution of positive mass on the half line λ ≥ 0 . Key tool: continued
fractions; cf. Stieltjes (1884, 1893-94), Chebyshev (1855, 1859, ... ).

The story goes back at least to Gauss (1814) .....
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Matching moments formulation

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with the
moments given by the Riemann-Stieltjes integral

ξk =

∫ ∞

0

λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase λ
(n)
i

i = 0, 1, . . . , which matches the first 2n moments for the distribution
function ω(λ) ,

∫ ∞

0

λk dω(n)(λ) ≡
n
∑

i=1

ω
(n)
i (λ

(n)
i )k = ξk, k = 0, 1, . . . , 2n− 1 .



Z. Strakoš 5

Outline

1. Matching moments model reduction

2. CG and Gauss-Christoffel quadrature

3. Non-Hermitian generalizations

4. Noise level in discrete ill-posed problems

5. Conclusions
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1 : Model reduction in dynamical systems

Consider a linear dynamical system (here we assume A HPD)

z′ = A z + bu ,

y = b∗z .

The transfer function

b∗(λI − A)−1b

given by the Laplace transform describes the impulse-response in the
frequency domain.
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1 : Distribution function ω(λ)

λi, si are the eigenpairs of A , ωi = |(si, w1)|
2 , w1 = b/‖b‖

...
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1 : Stieltjes recurrence

Let p0(λ) ≡ 1, p1(λ), . . . , pn(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Pn(λ) = [p0(λ), . . . , pn−1(λ)]T ,

λPn(λ) = Tn Pn(λ) + δn+1 pn(λ) en

represents the Stieltjes recurrence (1893-4), see Chebyshev (1855),
Brouncker (1655), Wallis (1656), with the Jacobi matrix

Tn ≡















γ1 δ2

δ2 γ2
. . .

. . .
. . . δn

δn γn















, δl > 0 , ℓ = 2, . . . , n .
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1 : Jacobi matrix and quadrature

Consider the nth Gauss-Christoffel quadrature approximation ω(n)(λ) of
the Riemann-Stieltjes distribution function ω(λ) . Its algebraic degree is
2n− 1 , i.e., it matches the first 2n moments

ξℓ−1 =

∫ U

L

λℓ−1 dω(λ) =

n
∑

j=1

ω
(n)
j {λ

(k)
j }

ℓ−1, ℓ = 1, . . . , 2n ,

where

ω
(n)
i = |(z

(n)
i , e1)|2 , λ

(n)
i = θ

(n)
i ,

and z
(n)
i is the normalized eigenvector of Tn corresponding to the

eigenvalue θ
(n)
i . The (orthogonal) polynomial pn(λ) has the roots

θ
(n)
i , i = 1, . . . , n .
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1 : Continued fraction corresponding to ω(λ)

FN (λ) ≡
1

λ− γ1 −
δ2
2

λ− γ2 −
δ2
3

λ− γ3 − . . .

. . .

λ− γN−1 −
δ2
N

λ− γN

The entries γ1, . . . , γN and δ2, . . . , δN represent coefficients of the
Stieltjes recurrence.
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1 : Partial fraction decomposition

Consider (for simplicity of notation) ‖b‖ = 1 . Using the spectral
decomposition,

b∗(λI −A)−1b =

∫ U

L

dω(µ)

λ− µ
=

N
∑

j=1

ωj

λ− λj

=
RN (λ)

PN (λ)
,

RN (λ)

PN (λ)
≡ FN (λ)

The denominator Pn(λ) corresponding to the nth convergent Fn(λ) of
FN (λ) , n = 1, 2, . . . is the nth orthogonal polynomial in the sequence
determined by ω(λ) ; see Chebyshev (1855).
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1 : Expansion at infinity

Recall ( ‖b‖ = 1 )

b∗(λI − A)−1b =

∫ U

L

dω(µ)

λ− µ
=

N
∑

j=1

ωj

λ− λj

≡ FN (λ) ,

and consider

1

λ− µ
=

1

λ

(

1 −
µ

λ

)−1

=
1

λ

(

1 +
µ

λ
+

µ2

λ2
+ . . .

)

,

1

λ− λj

=
1

λ

(

1 −
λj

λ

)−1

=
1

λ

(

1 +
λj

λ
+

λ2
j

λ2
+ . . .

)

.
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1 : Minimal partial realization

This gives the ninimal partial realization

b∗(λI −A)−1b = FN (λ) =
2n
∑

ℓ=1

ξℓ−1

λℓ
+ O

(

1

λ2n+1

)

.

Using the same expansion of the nth convergent Fn(λ) of FN (λ) ,

Fn(λ) =
2n
∑

ℓ=1

ξℓ−1

λℓ
+ O

(

1

λ2n+1

)

,

Where the moments in the numerators are identical due to the Gauss
quadrature property.
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1 : Minimal partial realization 1859 - 94

The nth convergent Fn(λ) of FN (λ) matches 2n moments
ξ0, . . . , ξ2n−1 , and it approximates FN (λ) with the error proportional to
λ−(2n+1) . This represents the minimal partial realization; see

Chebyshev (1859), Stieltjes (1894).

The minimal partial realization was rediscovered in the engineering
literature by Kalman (1979).

The works of Krylov (1931), Hestenes and Stiefel (1952), Vorobyev (1958,
1965) (see Brezinski (1991, ... )), were not studied and recalled. The links
with Chebyshev and Stieltjes were pointed out by Gragg (1974), Bultheel
and Van Barel (1997).
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Is it of any good to recall these line of thoughts in modern NLA?

We wish to solve large systems of linear algebraic equations etc. by
modern methods and algorithms and not to be bothered by some stories
and the thoughts of Chebyshev or Stieltjes about some moments ....
They can not be used in computations .... Are they of any use?

Whatever we think, the moments are going to get us.
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Outline

1. Matching moments model reduction

2. CG and Gauss-Christoffel quadrature

3. Non-Hermitian generalizations

4. Noise level in discrete ill-posed problems

5. Conclusions
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2 : Specific problem for λ = 0

Consider b∗(λI − A)−1b with λ = 0 . Then the minimal partial
realization representing the expansion at infinity is not applicable.
We do either

b∗A−1b = b∗(A−1b) ≈ b∗xn ,

with xn being an approximation to the solution of A x = b , or

b∗A−1b ≈ b∗A−1
n b ,

with An being an approximation to A . Mathematically, both
approaches are equivalent. Computationally, however, they can give
different results.
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2 : Caution

A possible source of confusion with model reduction in dynamical
systems.

Approximation of the scalar value b∗A−1b will lead to matching the same
moments as in the minimal partial realization given by the expansion of
the function FN (λ) at infinity.

The expansion of FN (λ) at zero that uses matching moments with A−1

is in approximating the scalar b∗A−1b of no use.

The error of the approximation will be expressed in an elegant way with no
relation to the error estimates in dynamical systems model reduction (see
below).
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2 : Krylov subspace methods

A x = b

An xn = bn

xn approximates the solution x
using the subspace of small dimension.

Sn ≡ Kn(A, r0) ≡ span {r0, Ar0, · · · , A
n−1r0} −→ moments !
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2 : Conjugate gradients (CG): A HPD

‖x− xn‖A = min
u∈x0+Kn(A,r0)

‖x− u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A) A Wn(A) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

An = Qn A Qn = WnW ∗
n A WnW ∗

n = Wn Tn W ∗
n ,
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2 : Computational algorithm

Given x0 (in approximating b∗A−1b we set x0 = 0 ), r0 = b−Ax0,
p0 = r0

For n = 1, 2, . . .

γn−1 = (rn−1, rn−1)/(pn−1, Apn−1)

xn = xn−1 + γn−1 pn−1

rn = rn−1 − γn−1 Apn−1

δn = (rn, rn)/(rn−1, rn−1)

pn = rn + δn pn−1.

Search directions are given by the modified residuals, γn−1 gives the line
search minimum, δn ensures the local A-orthogonality of the direction
vectors. No moments are visible. If we wish to get an insight, we need
them.
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2 : Numerical PDE connection of CG

Find u ≡ u(ξ1, ξ2), where ξ1, ξ2 denote the space variables, such that

−∇2u = f in a bounded domain Ω ⊂ R
2 ,

u = gD on ∂ΩD, and
∂u

∂n
= gN on ∂ΩN ,

where ∂ΩD ∪ ∂ΩN = ∂Ω , and ∂ΩD ∩ ∂ΩN = ∅ .

For the Galerkin FEM approximation

‖∇(u− u
(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖x− xn‖

2
A .
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An insight from viewing CG through moments?
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2 : CG ≡ matrix formulation of the Gauss q.

Ax = b , x0 ←→

∫ ξ

ζ

(λ)−1 dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n
∑

i=1

ω
(n)
i

(

θ
(n)
i

)−1

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)
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2 : CG and Gauss-Ch. quadrature errors

∫ U

L

f(λ) dω(λ) =
n
∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2
.

or, with x0 = 0 ,

b∗A−1b =
n−1
∑

j=0

γj‖rj‖
2 + r∗nA−1rn .
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2 : Mathematical model of FP CG

CG in finite precision arithmetic can be seen as the exact arithmetic CG
for the problem with the slightly modified distribution function with larger
support, i.e., with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... ,
Druskin, Kniznermann, Zemke, Wülling, Meurant, ...
Recent review and update in Meurant and S, Acta Numerica (2006).

One particular consequence (recently very relevant): In FP computations,
the composed convergence bounds eliminating large outlying eigenvalues
at the cost of one iteration per eigenvalue (see Axelsson (1976), Jennings
(1977)) are not relevant. The recent theory of support preconditioners
should be modified.
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2 : Axelsson (1976), Jennings (1977)
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2 : Sensitivity of the Gauss-Ch. Q.
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2 : A point going back to 1814

1. Gauss-Christoffel quadrature for a small number of quadrature nodes
can be highly sensitive to small changes in the distribution function
that enlarge its support.
In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions, with no singularity close to the interval of
integration.

O’Leary, S, Tichý (2007)
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Outline

1. Matching moments model reduction

2. CG and Gauss-Christoffel quadrature

3. Non-Hermitian generalizations (S, Tichý (2007))

4. Noise level in discrete ill-posed problems

5. Conclusions
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3 : Using Vorobyev method of moments (1958)

c∗ A−1 b ≈ c∗ A−1
n b ,

where An is the restriction of A to Kn(A, b) projected orthogonally to
Kn(A∗, c) ,

An = WnV ∗
n AWnV ∗

n ,

with the matrix representation of the inverse

A−1
n = WnT−1

n V ∗
n .

Here W ∗
nVn = I , the columns of Wn and Vn span Kn(A, b) resp.

Kn(A∗, c) , and Tn matches the 2n moments (Lanczos - BiCG)

v∗1 Ak w1 ≡ eT
1 T k

n e1 , k = 0, 1, . . . , 2n− 1 .
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3 : The BiCG method

Simultaneous solving of Ax = b , A∗y = c .

input A, b, c

x0 = y0 = 0
r0 = p0 = b, s0 = q0 = c

for n = 0, 1, . . .

αn =
s∗

n
rn

q∗

n
Apn

,

xn+1 = xn + αn pn , yn+1 = yn + αn
∗ qn ,

rn+1 = rn − αn Apn , sn+1 = sn − α∗
n A∗qn ,

βn+1 =
s∗

n+1rn+1

s∗

n
rn

,

pn+1 = rn+1 + βn+1 pn , qn+1 = sn+1 + β∗
n+1 qn

end
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3 : The BiCG approximation to c
∗
A
−1

b

Using local biorthogonality

c∗A−1b =
n−1
∑

j=0

αjs
∗
jrj + s∗nA−1rn .

Using global biorthogonality

c∗A−1b = c∗xn + s∗nA−1rn .

Finally,

c∗A−1
n b = (c∗v1) ‖b‖ (T−1

n )1,1 = c∗xn =

n−1
∑

j=0

αjs
∗
jrj .
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3 : RCWA - comparison of estimates
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Outline

1. Matching moments model reduction

2. CG and Gauss-Christoffel quadrature

3. Non-Hermitian generalizations

4. Noise level in discrete ill-posed problems

5. Conclusions
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4 : Discrete ill-posed problems

A x ≈ b, A ∈ R
n×n, b ∈ R

n,

with the right-hand side corrupted by a white noise

b = bexact + bnoise 6= 0 ∈ R
n , ‖ bexact ‖ ≫ ‖ bnoise ‖ ,

and the goal to approximate xexact ≡ A−1 bexact.

The noise level δnoise ≡
‖bnoise‖

‖bexact‖
≪ 1 .
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4 : Properties (assumptions)

● matrices A, AT , AAT have a smoothing property;
● left singular vectors uj of A represent increasing frequencies as j

increases (recall the Fredholm integral equation behind);
● the system A x = bexact satisfies the discrete Picard condition.

Discrete Picard condition (DPC):

On average, the components |(bexact, uj)| of the true right-hand side
bexact in the left singular subspaces of A decay faster than the singular
values σj of A, j = 1, . . . , n .

White noise:

The components |(bnoise, uj)|, j = 1, . . . , n do not exhibit any trend.
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4 : Hybrid methods

Golub-Kahan iterative bidiagonalization ( s1 = b/‖b‖ )

AT Sk = Wk LT
k ,

A Wk = [ Sk, sk+1 ] Lk+ = Sk+1 Lk+

is used in combination with an inner regularization of the projected
bidiagonal problem.

Stopping criteria? Knowing the noise level would make a big difference.

Under the given (natural) assumptions,

the Golub-Kahan iterative bidiagonalization reveals the noise level δnoise ;
see Hnětynková, Plešinger, S (2009).
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4 : Main point

The GK bidiagonalization is closely related to the Lanzcos
tridiagonalization and therefore to the matching moments problem.
It generates at each step k the distribution function

ω(k)(λ) with nodes (θ
(k)
ℓ )2 and weights ω

(k)
ℓ = |(p

(k)
ℓ , e1)|

2

that approximates the distribution function

ω(λ) with nodes σ2
j and weights ωj = |(s1, uj)|

2 ,

where σ2
j , uj are the eigenpairs of A AT , for j = n, . . . , 1 , and

θ
(k)
ℓ , p

(k)
ℓ are the eigenpairs of LkL∗

k , k = 1, . . . , , ℓ = 1, . . . , k .



Z. Strakoš 40

4 : Approximating the distribution function

Discrete ill-posed problem, the smallest node and weight:
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4 : Solving ill-posed problems

Five tons large real world ill-posed problem:
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4 : Reconstructed elephant and its error

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
41
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Outline

1. Matching moments model reduction

2. CG and Gauss-Christoffel quadrature

3. Non-Hermitian generalizations

4. Noise level in discrete ill-posed problems

5. Conclusions
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5 : Making links is good

● It is good to link the projection-based and algorithmic views of Krylov
subspace methods with the model reduction and matching moments
view, Gauss-Christoffel quadrature, etc.

● Rounding error analysis of Krylov subspace methods has had
unexpected side effects in understanding of general mathematical
phenomena independent of any numerical stability issues such as
the sensitivity of the Gauss-Christoffel quadrature.

● Analysis of Krylov subspace methods for solving linear problems
has to deal with highly nonlinear finite dimensional phenomena.
See moments.

● Knowledge of the problem, like the properties of the distribution function
corresponding to the discrete ill-posed problem, can suggest the right
link.
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5 : Continued fractions in mathematics and .....

● Euclid, ...... , Brouncker and Wallis (1655-56): Three term recurences
(for numbers)

● Euler (1748), ...... , Brezinski (1991), Khrushchev (2008)
● Gauss (1814), Jacobi (1826)
● Chebyshev (1855, 1859), Markov (1884), Stieltjes (1884, 1893-94):

Orthogonal polynomials
● Hilbert (190x), Von Neumann (1927, 1932), Wintner (1929)
● Krylov (1932), Lanczos (1950), Hestenes and Stiefel (1952), Vorobyev

(1958, 1965), Golub and Welsh (1968), .....
● Gordon (1968), Schlesinger and Schwartz (1966), Reinhard (1979), ...
● Paige (1971), Reid (1971), Greenbaum (1989)
● Gragg (1974), Kalman (1979), Gallivan, Grimme, Van Dooren (1994),

Butlheel, Van Barel (1997) −→ Chebyshev, Markov, Stieltjes !
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Thanks

Thank you for your kind patience!
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